\(\int \frac {x (a+b \text {arccosh}(c x))}{(d-c^2 d x^2)^{5/2}} \, dx\) [128]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 127 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {b x \sqrt {-1+c x} \sqrt {1+c x}}{6 c d \left (d-c^2 d x^2\right )^{3/2}}+\frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} \text {arctanh}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}} \]

[Out]

1/3*(a+b*arccosh(c*x))/c^2/d/(-c^2*d*x^2+d)^(3/2)+1/6*b*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d/(-c^2*d*x^2+d)^(3/2)
+1/6*b*arctanh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(-c^2*d*x^2+d)^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {5914, 41, 205, 213} \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {b \sqrt {c x-1} \sqrt {c x+1} \text {arctanh}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}}+\frac {b x \sqrt {c x-1} \sqrt {c x+1}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}} \]

[In]

Int[(x*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*c*d^2*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]) + (a + b*ArcCosh[c*x])/(3*c^2*d
*(d - c^2*d*x^2)^(3/2)) + (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTanh[c*x])/(6*c^2*d^2*Sqrt[d - c^2*d*x^2])

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 5914

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*
(-1 + c*x)^p)], Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a,
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{(-1+c x)^2 (1+c x)^2} \, dx}{3 c d^2 \sqrt {d-c^2 d x^2}} \\ & = \frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{\left (-1+c^2 x^2\right )^2} \, dx}{3 c d^2 \sqrt {d-c^2 d x^2}} \\ & = \frac {b x \sqrt {-1+c x} \sqrt {1+c x}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{-1+c^2 x^2} \, dx}{6 c d^2 \sqrt {d-c^2 d x^2}} \\ & = \frac {b x \sqrt {-1+c x} \sqrt {1+c x}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \text {arccosh}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} \text {arctanh}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.28 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {\sqrt {d-c^2 d x^2} \left (-2 b c x+2 b c^3 x^3+4 a \sqrt {-1+c x} \sqrt {1+c x}+4 b \sqrt {-1+c x} \sqrt {1+c x} \text {arccosh}(c x)+b \left (-1+c^2 x^2\right )^2 \log (-1+c x)-b \log (1+c x)+2 b c^2 x^2 \log (1+c x)-b c^4 x^4 \log (1+c x)\right )}{12 c^2 d^3 (-1+c x)^{5/2} (1+c x)^{5/2}} \]

[In]

Integrate[(x*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(-2*b*c*x + 2*b*c^3*x^3 + 4*a*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + 4*b*Sqrt[-1 + c*x]*Sqrt[1 +
c*x]*ArcCosh[c*x] + b*(-1 + c^2*x^2)^2*Log[-1 + c*x] - b*Log[1 + c*x] + 2*b*c^2*x^2*Log[1 + c*x] - b*c^4*x^4*L
og[1 + c*x]))/(12*c^2*d^3*(-1 + c*x)^(5/2)*(1 + c*x)^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(219\) vs. \(2(107)=214\).

Time = 1.14 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.73

method result size
default \(\frac {a}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +2 \,\operatorname {arccosh}\left (c x \right )\right )}{6 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(220\)
parts \(\frac {a}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +2 \,\operatorname {arccosh}\left (c x \right )\right )}{6 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(220\)

[In]

int(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/3*a/c^2/d/(-c^2*d*x^2+d)^(3/2)+b*(1/6*(-d*(c^2*x^2-1))^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+2*arccosh(c*x)
)/(c^2*x^2-1)^2/d^3/c^2-1/6*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^2/(c^2*x^2-1)*ln(1+c*x+(c
*x-1)^(1/2)*(c*x+1)^(1/2))+1/6*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^2/(c^2*x^2-1)*ln((c*x-
1)^(1/2)*(c*x+1)^(1/2)+c*x-1))

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.31 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\left [\frac {4 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} b c x + 8 \, \sqrt {-c^{2} d x^{2} + d} b \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {-d} \log \left (-\frac {c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} - 4 \, {\left (c^{3} x^{3} + c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} \sqrt {-d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) + 8 \, \sqrt {-c^{2} d x^{2} + d} a}{24 \, {\left (c^{6} d^{3} x^{4} - 2 \, c^{4} d^{3} x^{2} + c^{2} d^{3}\right )}}, \frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} b c x - {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {d} \arctan \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} c \sqrt {d} x}{c^{4} d x^{4} - d}\right ) + 4 \, \sqrt {-c^{2} d x^{2} + d} b \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + 4 \, \sqrt {-c^{2} d x^{2} + d} a}{12 \, {\left (c^{6} d^{3} x^{4} - 2 \, c^{4} d^{3} x^{2} + c^{2} d^{3}\right )}}\right ] \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

[1/24*(4*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*b*c*x + 8*sqrt(-c^2*d*x^2 + d)*b*log(c*x + sqrt(c^2*x^2 - 1))
- (b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(-d)*log(-(c^6*d*x^6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 - 4*(c^3*x^3 + c*x)*sqrt(
-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*sqrt(-d) - d)/(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) + 8*sqrt(-c^2*d*x^2 + d
)*a)/(c^6*d^3*x^4 - 2*c^4*d^3*x^2 + c^2*d^3), 1/12*(2*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*b*c*x - (b*c^4*x^
4 - 2*b*c^2*x^2 + b)*sqrt(d)*arctan(2*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*c*sqrt(d)*x/(c^4*d*x^4 - d)) + 4*
sqrt(-c^2*d*x^2 + d)*b*log(c*x + sqrt(c^2*x^2 - 1)) + 4*sqrt(-c^2*d*x^2 + d)*a)/(c^6*d^3*x^4 - 2*c^4*d^3*x^2 +
 c^2*d^3)]

Sympy [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(x*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

Maxima [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

b*integrate(x*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/(-c^2*d*x^2 + d)^(5/2), x) + 1/3*a/((-c^2*d*x^2 + d)^(3/2
)*c^2*d)

Giac [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x/(-c^2*d*x^2 + d)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \]

[In]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(5/2),x)

[Out]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(5/2), x)